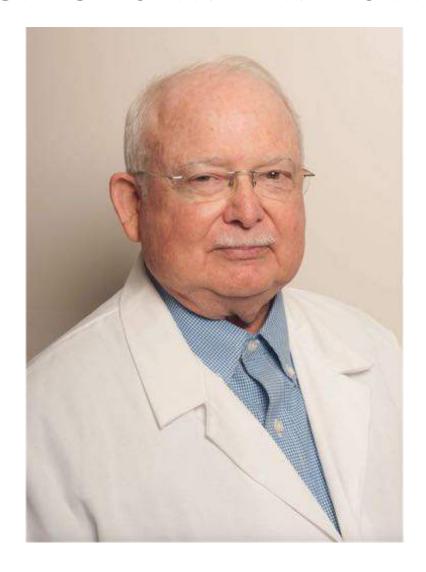
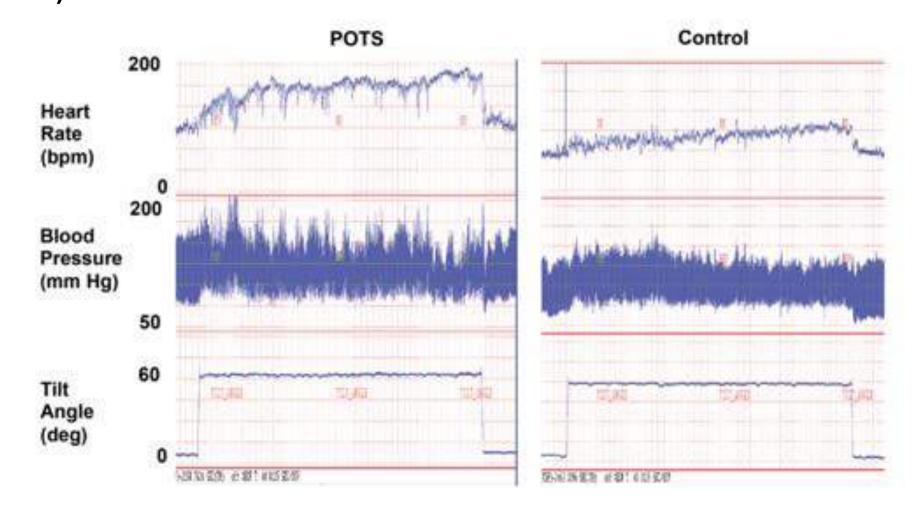
Autoimmunity in Postural Orthostatic Tachycardia Syndrome (POTS)

Taylor Doherty, M.D.


Division of Rheumatology, Allergy and Immunology

Department of Medicine

UC San Diego



In memoriam: Dr. David Kem

http://www.dysautonomiainternational.org/blog/wordpress/in-memoriam-dr-david-kem/

Postural orthostatic tachycardia syndrome (POTS)

7			¥		Э	
		v	۰	8	п	
-	٠,	,	ŧ.	Æ	u	u

Symptoms	Number	number*	% Total
Cardiovascular symptoms			
Lightheadedness	3992	4034	99
Tachycardia	3901	4032	97
Presyncope	3789	4032	94
Shortness of breath	3562	4032	88
Palpitations	3033	4031	87
Chest pain	3164	4032	79
Low blood pressure	2864	4033	71
Syncope	1452	4033	36
Gastrointestinal symptoms	E		
Nausea	3618	4032	90
Stomach pains	3357	4032	83
Bloating	3184	4031	79
Constipation	2845	4032	71
Diarrhoea	2783	4032	69
Neurological symptoms - h	ead and b	rain	
Headache	3797	4032	94
Difficulty concentrating	3794	4032	94
Memory problems	3538	4032	87
Tremulousness	3124	4039	78

Neurological symptoms -	eyes and	ears	
Blurred vision	3015	4032	75
Dry mouth	2662	4031	66
Dry eyes	2383	4030	60
Neurological symptoms -	- extremitie	s	
Muscle pains	3374	4029	84
Foot coldness	3377	4030	84
Muscle weakness	3344	4030	83
Hand coldness	3311	4029	82
Hand tingling	3060	4029	76
Foot tingling	2701	4028	67
Hand numbness	2627	4029	65
Foot numbness	2350	4029	58
Skin symptoms			
Skin flushing	2774	4029	69
Bladder symptoms			
Frequent urination	2733	4031	68

Immune triggers in POTS

 A recent history of suspected infection is reported in 20-50% of patients with acute triggers.

• Infectious agents linked to POTS include *Borrelia burgdorferi*, Epstein Barr virus (EBV), *Trypanosoma cruzi*, *Mycoplasma pneumoniae*, and recently SARS-CoV2 (30-60% of long-COVID syndrome).

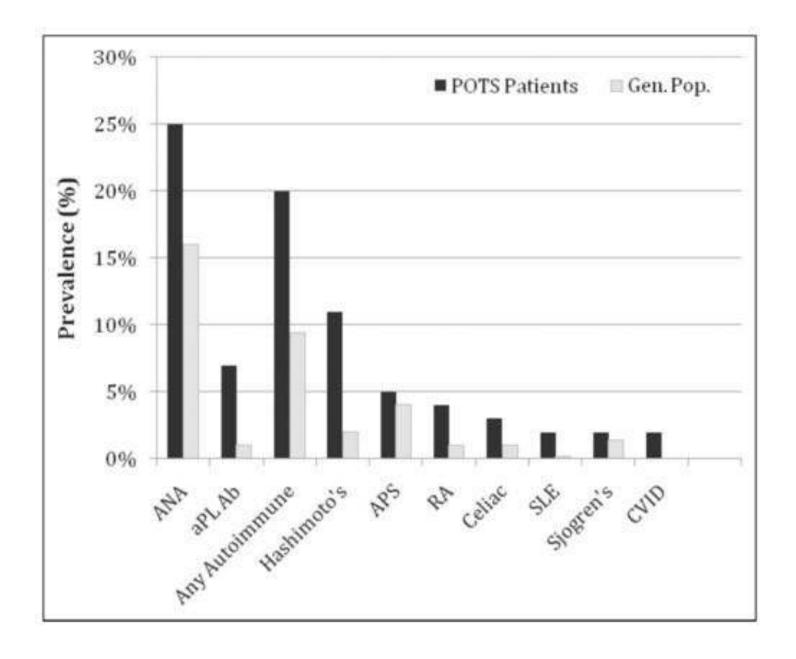

• Of acute triggers: surgery (12%), pregnancy (9%), vaccine (6%), concussion (4%) which may have strong immune effects.

Table 2 Common comorbidities in POTS patients

	Number (%) (of		
Comorbidity	3933 respondents)		
Migraine headaches	1557 (40%)		
Irritable bowel syndrome	1192 (30%)		
Ehlers–Danlos syndrome	994 (25%)		
Chronic fatigue syndrome	809 (21%)		
Asthma	798 (20%)		
Fibromyalgia	786 (20%)		
Raynaud's phenomena	610 (16%)		
Iron deficiency anaemia	628 (16%)		
Gastroparesis	548 (14%)		
Vasovagal syncope	499 (13%)		
Inappropriate sinus tachycardia	448 (11%)		
Mast cell activation disorder	353 (9%)		
Autoimmune disease	616 (16%)		
Hashimoto's thyroiditis	228 (6%)		
Coeliac disease	133 (3%)		
Sjögren's syndrome	112 (3%)		
Rheumatoid arthritis	93 (2%)		
Lupus	81 (2%)		
Other	160 (4%)		

Patient reported

 Higher prevalence of autoimmune disorders in POTS patients and close relatives including: Hashimoto's thyroiditis, Sjögren's syndrome, celiac disease and systemic lupus erythematosus (SLE).

Autoimmune autonomic neuropathy

- Celiac disease and Sjogren's syndrome are common causes of autonomic neuropathy after diabetes.
- Dry eyes are common in POTS patients presenting to a neurology clinic but Sjogren's work up often not done.
- Antibody testing alone for Sjogren's often not enough (salivary biopsy).
- Small fiber neuropathy is present in Sjogren's, celiac, and other autoimmune causes that can co-exist with POTS.

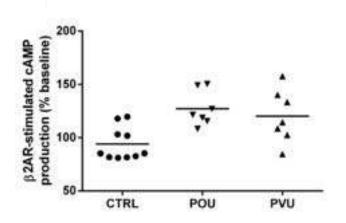
HLA association in POTS

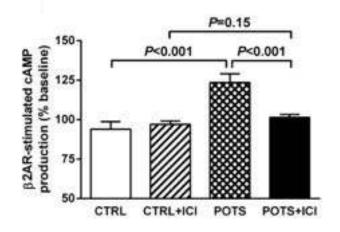
	Phenotype frequency as no. (percentage)			Statistical analysis				
				POTS versus epilepsy controls		POTS versus healthy controls		
HLA aliele or haplotype	POTS	Epilepsy controls	Healthy controls	OR (95% CI)	Ac ^a	OR (95% CI)	Pc*	
Total (n=17)								
DQ81*06:09	7/17 (41%)	17/210 (8%)	36/485 (7%)	7.9 (2.7-23.5)	8.9 × 10 ⁻¹	8.7 (3.1-24.3)	3.2 × 10	
C*03:02	8/17 (47%)	32/210 (15%)	71/485 (15%)	4.9 (1.8-13.8)	0.075	5.2 (1.9-13.9)	0.043	
DR81*13:02	7/17 (41%)	28/210 (13%)	83/485 (17%)	4.6 (1.6-12.9)	0.23	3.4 (1.3-9.2)	0.65	
B*58.01	7/17 (41%)	31/210 (15%)	59/485 (12%)	4 (1.4-11.4)	0.51	5.1 (1.9-13.8)	0.15	
A*33:03	7/17 (41%)	56/210 (27%)	140/485 (29%)	1.9 (0.7-5.3)	>0.99	1.7 (0.6-4.6)	0.65	
Haplotype#1*	7/17 (41%)	16/210 (8%)	32/485 (7%)	8.5 (2.8-25.3)	2.6 × 10 ⁻³	9.9 (3.5-27.8)	6.5 × 10	
Haplotype#2*	6/17 (35%)	13/210 (6%)	29/485 (6%)	8.3 (2.6-25.9)	6.4 × 10 3	8.5 (3.0-24.8)	3.2 × 10	
Patients with antibodies	to both 2AR ar	nd 2AR (n=13)		Residence despite	SECTION WAS			
DQ81*06:09	7/13 (54%)	17/210 (8%)	36/485 (7%)	13.2 (4.0-43.9)	1.2 × 10 3	14.6 (4.6-45.6)	4.0 × 10	
C*03:02	8/13 (62%)	32/210 (15%)	71/485 (15%)	8.9 (2.7-28.9)	8.0 × 10 3	9.3 (3.0-29.3)	4.2 × 10	
DR81*13:02	7/13 (54%)	28/210 (13%)	83/485 (17%)	7.6 (2.4-24.2)	0.037	5.7 (1.9-17.2)	0.11	
B*58:01	7/13 (54%)	31/210 (15%)	59/485 (12%)	6.7 (2.1-21.4)	0.086	8.4 (2.7-25.9)	0.021	
A*33:03	7/13 (54%)	56/210 (27%)	140/485 (29%)	3.2 (1.0-10.0)	>0.99	2.9 (0.9-8.7)	0.65	
Haplotype#1*	7/13 (54%)	16/210 (8%)	32/485 (7%)	14.1 (4.2-47.1)	3.4 × 10 -4	16.5 (5.2-52.0)	7.8 × 10	
Haplotype#2*	6/13 (46%)	13/210 (6%)	29/485 (6%)	13.0 (3.8-44.3)	1.2×10^{-3}	13.5 (4.3-42.7)	5.6 × 10 °	

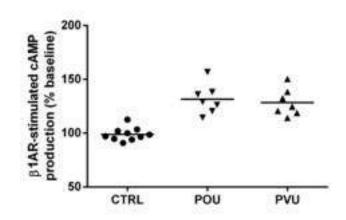
Autonomic Metabotrophic Receptors

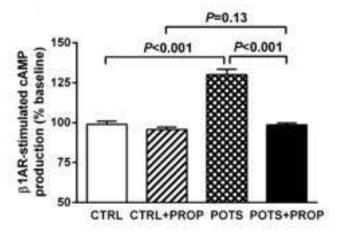
Muscarinic receptors:

Receptor	G-protein	Messenger	Effect	Example Functions
M ₁	G_q	Phospholipase C & IP, increased	elevated Ca**	salivary gland & stomach secretion
M ₂	G,	cAMP decreased	decreased Ca influx & increased K efflux	decreased heart rate and force
M ₃	G_q	Phospholipase C & IP, increased	elevated Ca**	constriction of vessels & bronchioles detrusor contraction (micturition)
M_4	G	cAMP decreased	decreased Ca influx & increased K efflux	inhibitory effects
M ₅	G_q	Phospholipase C & IP, increased	elevated Ca	present in CNS

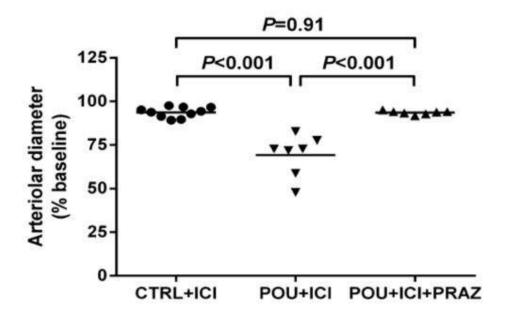

Adrenergic receptors:

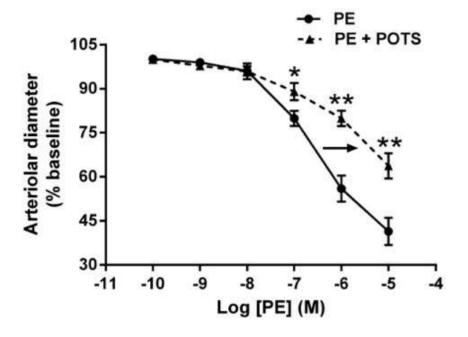

Receptor	G-protein	Messenger	Effect	Example Functions
α_{i}	G _q	Phospholipase C & IP, increased	elevated Ca	cutaneous & GI vasoconstriction; urethral sphincter contraction
α_2	G,	cAMP decreased	decreased Carrinflux	inhibition of neurotransmitter release
β,	G,	cAMP increased	elevated Ca	increased cardiac output (rate & force)
β,	G, G,	cAMP increased cAMP decreased	elevated Ca ⁻⁺ decreased Ca ⁻⁺ influx & increased K ⁻ efflux	constriction of gut sphincters muscle vessel dilation; detrusor relaxation
β_3	G, G,	cAMP increased cAMP decreased	elevated Carrinflux decreased Carrinflux & increased K refflux	adipose tissue lipolysis detrusor relaxation




Autoimmune Basis for Postural Tachycardia Syndrome

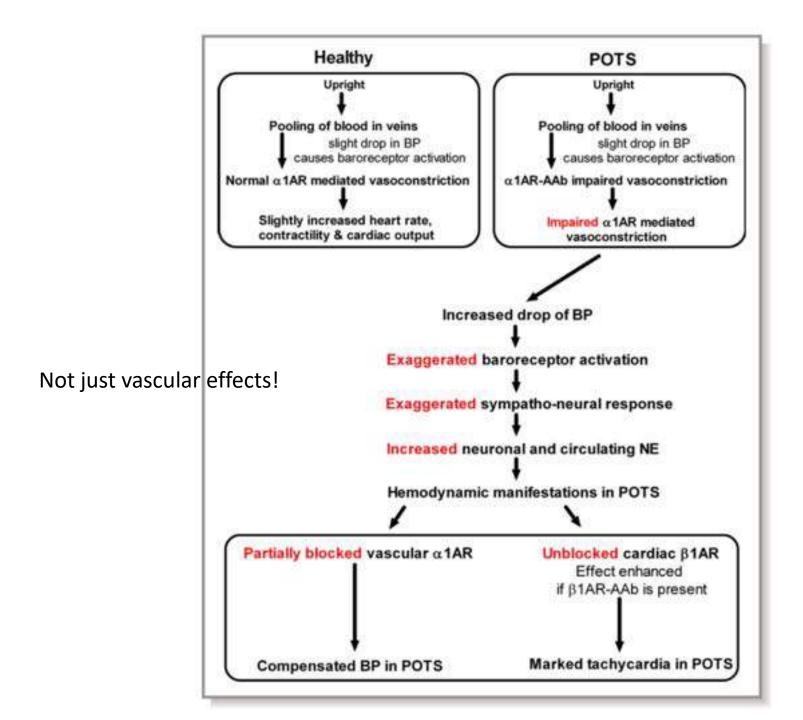
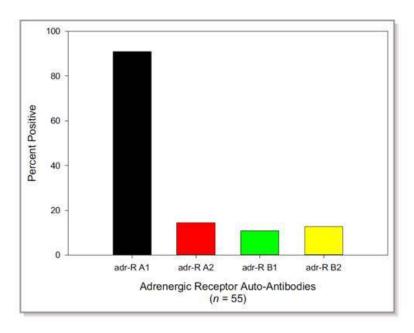
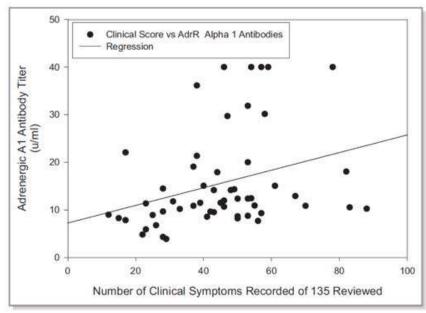
Hongliang Li, MD, PhD; Xichun Yu, MD; Campbell Liles, BS; Muneer Khan, MD; Megan Vanderlinde-Wood, MD; Allison Galloway, MD; Caitlin Zillner, BS; Alexandria Benbrook, BS; Sean Reim, BS; Daniel Collier, BS; Michael A. Hill, PhD; Satish R. Raj, MD; Luis E. Okamoto, MD; Madeleine W. Cunningham, PhD; Christopher E. Aston, PhD; David C. Kem, MD

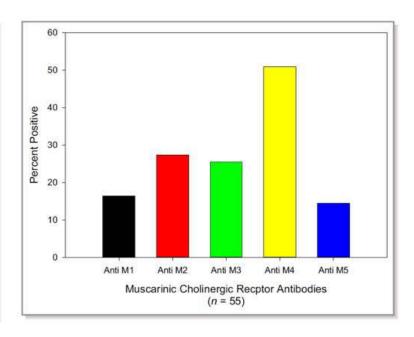




Autoimmune Basis for Postural Tachycardia Syndrome

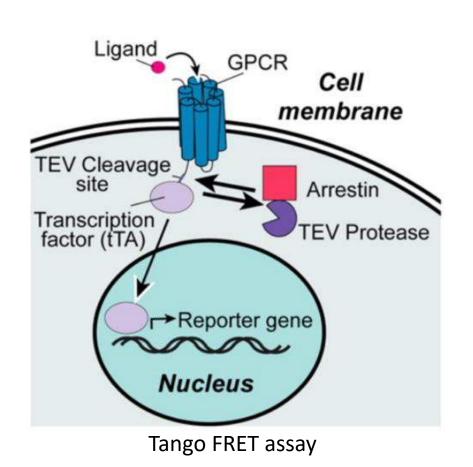
Hongliang Li, MD, PhD; Xichun Yu, MD; Campbell Liles, BS; Muneer Khan, MD; Megan Vanderlinde-Wood, MD; Allison Galloway, MD; Caitlin Zillner, BS; Alexandria Benbrook, BS; Sean Reim, BS; Daniel Collier, BS; Michael A. Hill, PhD; Satish R. Raj, MD; Luis E. Okamoto, MD; Madeleine W. Cunningham, PhD; Christopher E. Aston, PhD; David C. Kem, MD

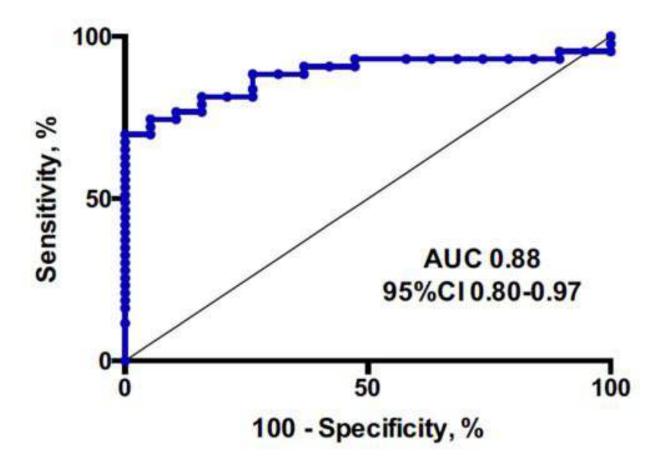





Table 2 Test positivity (direct-activating and/or ligand-modulating activity) among patients diagnosed with POTS

Patient no.	α1AR Ab	Security Services	BIAR Ab		BZAR Ab
	Activating	Modulating	Activating	Modulating	Activating
1		×		www.ses.iiii.e.isciiiii.	×
2			×	×	
3		×	*	×	×
4	×		×	×	*
5	×		×	*	
6			×	×	(X1)
7	×		×	*	
8	×		×	*	
9				*	* * * * * *
10			×	×	×
11	×			×	×
12	×	*	×	*	×
13		×			×
14		×			×
15	×	×			
16		×	×	×	×
17	*	*	*	×	×
Total	8/17	8/17	11/17	13/17	12/17

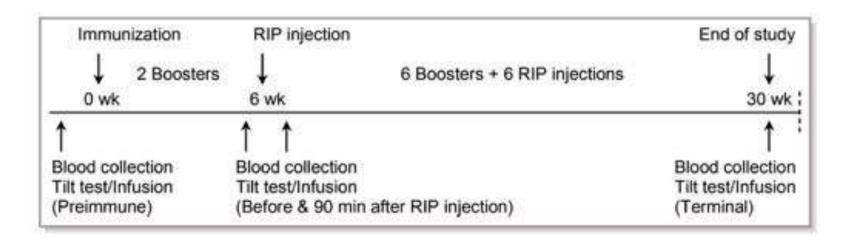
Adrenergic and Muscarinic Receptor antibodies by ELISA in POTS

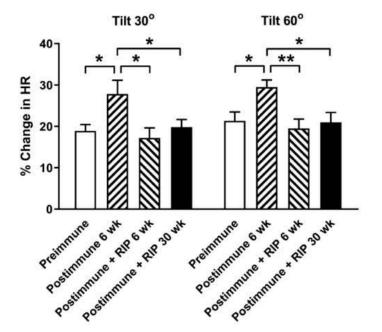


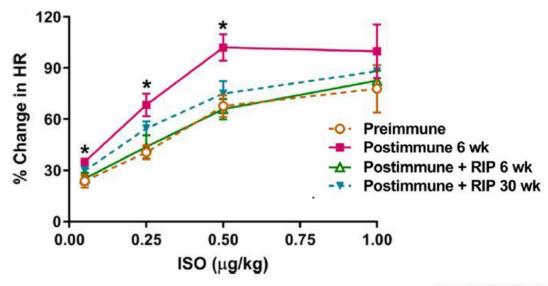


r=0.31, *P*=0.02

Novel assays for GPCR autoantibodies in POTS

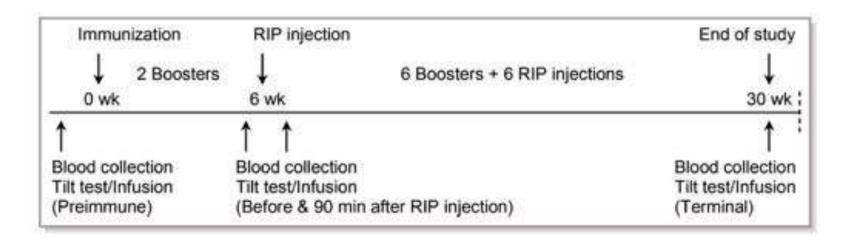


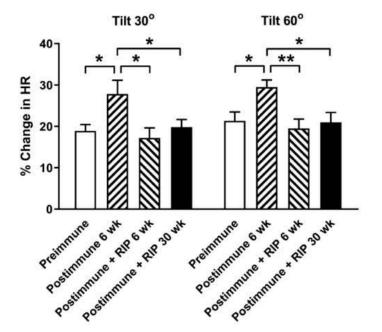

ROC: A1, B2, M2, opiod receptor-like 1

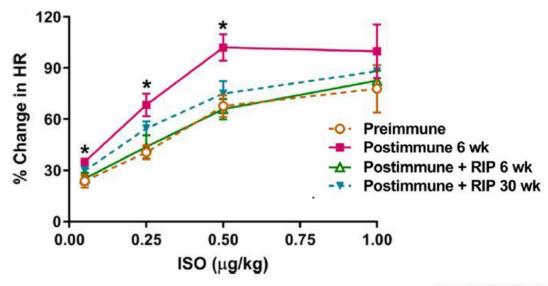


-69 | PNAS | January 8, 2008 | vol. 105 | no. 1

Adrenergic Autoantibody-Induced Postural Tachycardia Syndrome in Rabbits

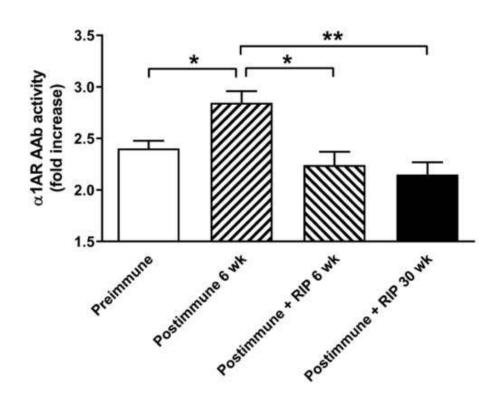


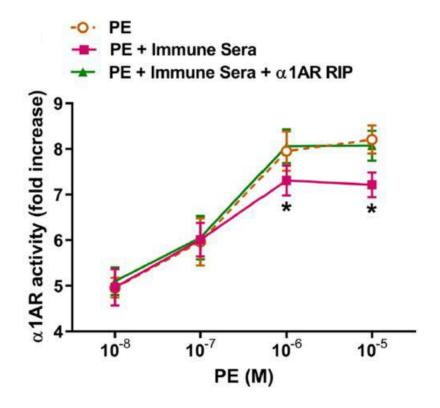

GPCR autoantibodies in other diseases


Disease	GPCR-AAB directed against () - receptor	Activity
Idiopathic dilated cardiomyopathy	β1-adrenergic	agonistic
	muscarinic M2	agonistic
Peripartum cardiomyopathy	β1-adrenergic	agonistic
	muscarinic M2	agonistic
Chagas' cardiomyopathy	β1-adrenergic	agonistic
	muscarinic M2	agonistic
	β2-adrenergic	agonistic
Myocarditis	β1-adrenergic	agonistic
Electric cardiac abnormalities	β1-adrenergic	agonistic
	muscarinic M2	agonistic
	β2-adrenergic	agonistic
	serotoninergic 5HT4	n.d.
Refractory hypertension	α1-adrenergic	agonistic
Idiopathic pulmonary hypertension	α1-adrenergic	agonistic
	endothelin 1 ETA	agonistic
Malignant hypertension	angiotensin II AT1	agonistic
Preeclampsia	angiotensin II AT1	agonistic
	endothelin 1 ETA	agonistic
Orthostatic hypotension	β2-adrenergic	agonistic
	muscarinic M3	n.d.
Postural orthostatic tachycardia	β1-adrenergic	agonistic
syndrome	β2-adrenergic	agonistic
(POTS)	α1-adrenergic	agonistic
	muscarinic M2	agonistic
	angiotensin II AT1	agonistic
Diabetes mellitus type II	α1-adrenergic	agonistic
Vascular renal rejection	angiotensin II AT1	agonistic

Thromboangiitis obliterans	α1-adrenergic	agonistic
	endothelin 1 ETA	agonistic
	angiotensin II AT1	agonistic
Systemic lupus erythematosus	serotoninergic 5HT4	antagonistic
Allergic asthma	β2-Adrenergic	inhibitory
Open angle glaucoma	β2-Adrenergic	agonistic
Vascular dementia / Alzheimer's	α1-adrenergic	agonistic
dementia	β2-adrenergic	agonistic
	endothelin 1 ETA	agonistic
	angiotensin II AT1	n.d.
Benign prostate hyperplasia	endothelin 1 ETA	agonistic
Complex regional pain syndrome	muscarinic M2	agonistic
(CRPS)	β2-adrenergic	agonistic
Sjögren's syndrome	muscarinic M3	agonistic
Fatigue syndrome	β2-adrenergic	agonistic
	muscarinic M2	agonistic
	muscarinic M3	n.d.
	muscarinic M4	n.d.
Post cancer chemotherapy	α1-adrenergic	agonistic
	angiotensin 1-7 Mas	agonistic
Periodontitis	β1-adrenergic	agonistic

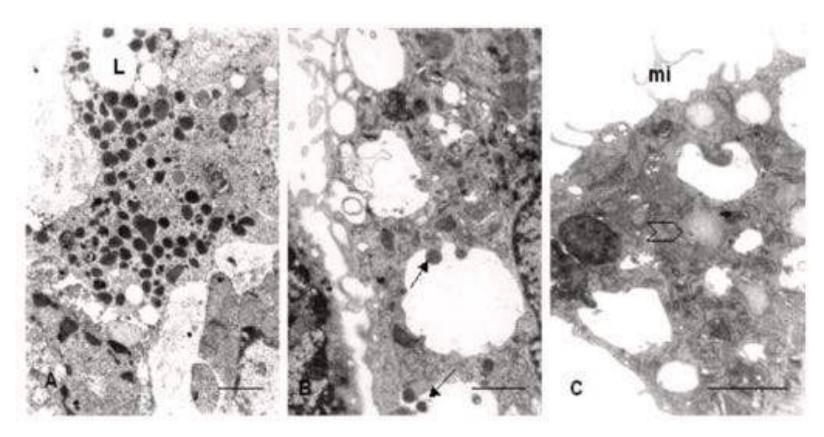
Adrenergic Autoantibody-Induced Postural Tachycardia Syndrome in Rabbits





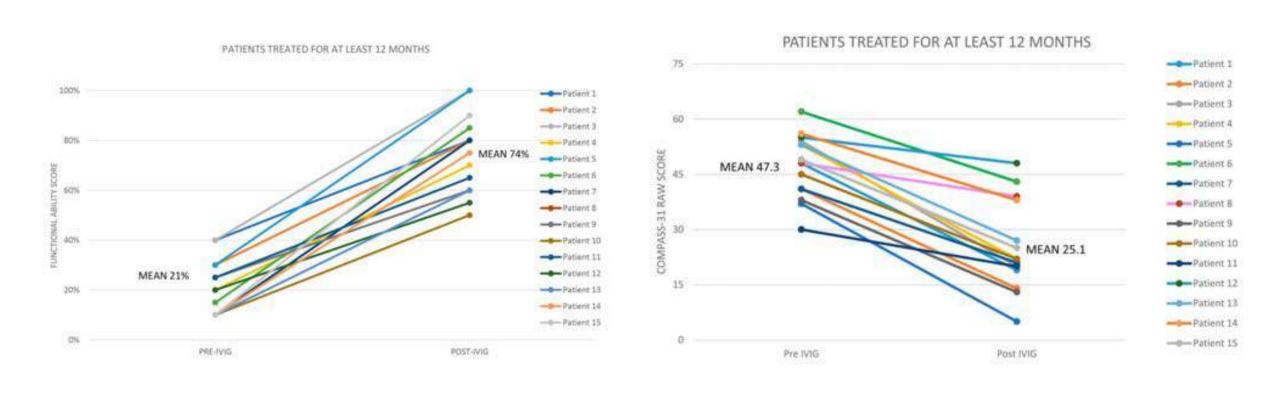
Adrenergic Autoantibody-Induced Postural Tachycardia Syndrome in Rabbits

Hongliang Li, MD, PhD; Gege Zhang, MD; Liping Zhou, MD; Zachary Nuss, BS; Marci Beel, BS; Brendon Hines, BS; Taylor Murphy, BS; Jonathan Liles, BS; Ling Zhang, MD; David C. Kem, MD; Xichun Yu, MD



Whitebsky's postulates in autoimmunity

Witebsky's postulates (1957) [3 · ·]

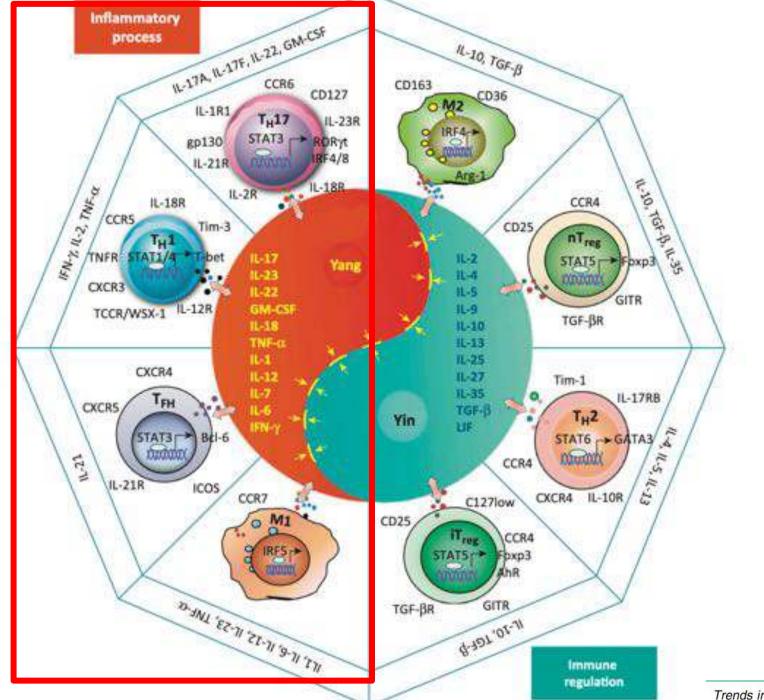

- The direct demonstration of free circulating antibodies OR of cell bound antibodies that are active at body temperature
- The recognition of the specific antigen against which this antibody is directed
- The production of antibodies against the same antigen in experimental animals
- The appearance of pathological changes in the corresponding tissues of an actively sensitized experimental animal that are basically similar to those in human disease

Autoantibodies against G-Protein-Coupled Receptors Modulate Heart Mast Cells

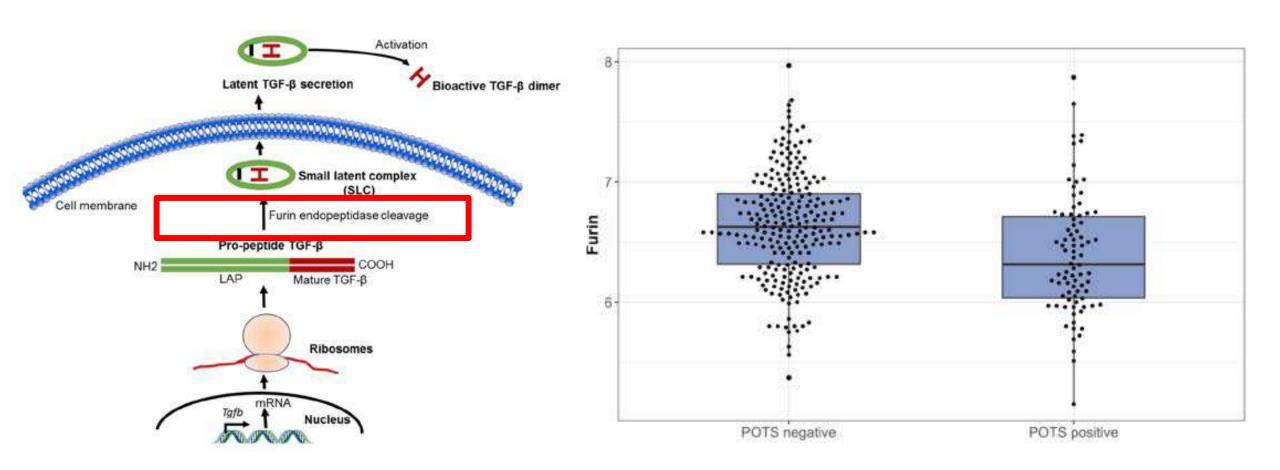
Mature mast cell Alpha-1R/Angiotensin 2R

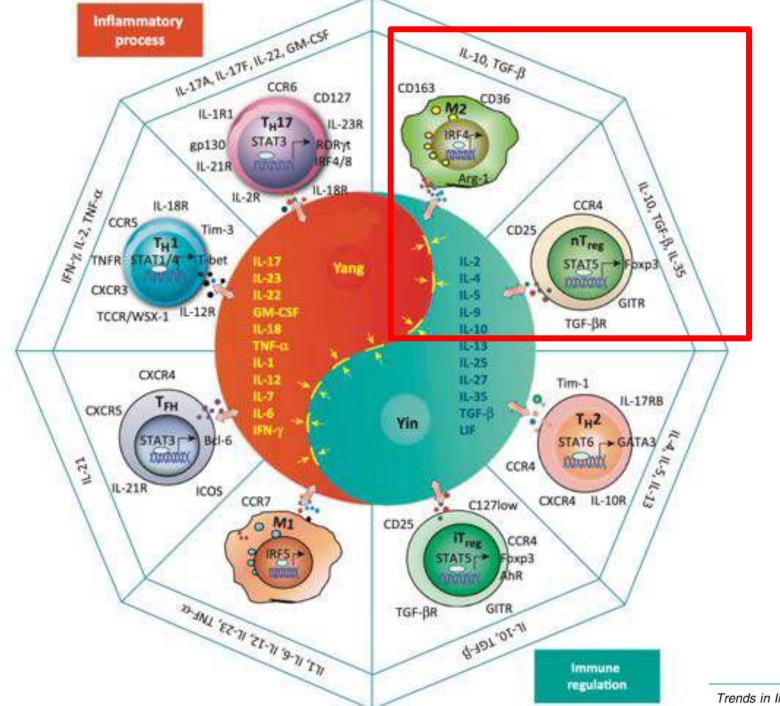
Intravenous Immunoglobulin Therapy in Refractory Autoimmune Dysautonomias: A Retrospective Analysis of 38 Patients

- Do the GPCR autoantibodies have anything to do with POTS pathophysiology?
- How do GPCR autoantibodies develop?
- Are we close to a reliable commercial assay to diagnose autoimmune POTS?
- What subset of POTS patients will respond (if at all) to immunotherapy?


Inflammatory 11-17A, 11-17F, 11-22, GM-CSF process 11-10, TGF-B CD163 The Yin and Yang CD127 CD36 IL-1R1 TH17 IL-23R STATE RORY gp130 Of Cytokines IL-21R IFN-Z U.Z. TNEQ IL-18R CCR4 Tim-3 CD25 **1L-2** STATS Yang CXCR3 11-22 TCCR/WSX-1 IL-12R **GM-CSF** 11-9 TGF-BR IL-18 IL-10 IL-13 IL-25 CXCR4 IL-12 IL-27 Tim-1 IL-35 IL-17RB CXCR5 TGF-B T_H2 Yin STATE - GATAS CCR4 IL-21R ICOS CXCR4 IL-10R CCR7 C127low **CD25** CCR4 11. 11-6, 11-12, 11-23, TMF-02 GITR TGF-BR Immune regulation

Inflammatory cytokine abnormalities in POTS


Cytokine/Chemokine	POTS Patients (r = 34) (pg/mL)	Normal (pg/ml.)	Major Function
IL 18	332 ± 100	<10	Regulates cell proliferation
IL 10	16 ± 3.6	<6	Inhibitory to T helper cells
IL 21	1918 ± 410	<200	Controls NK and T cells
TNFX	342 ± 78	-3	Regulates inflammation
INFY	226 ± 62	<5	Antiviral
CD30	193 ± 59	<10	Regulates cell proliferation
CD40 L	119 ± 11	350-90	Recruits leukocytes
RANTES (CCL5)	995 ± 123	5000-6100	Chemotactic for T cells
P-Selectin	$12,540 \pm 1094$	10,000-130,000	Recruits leukocytes
MCP-1	78 ± 5	65-1025	Recruits monocytes
AdR A1 antibodies	16.6 U/mL	<7 U/mL	Autoantibody
AChR M4 Abs	11.2 U/mL	<7 U/mL	Autoantibody


Cytokine/ Chemokine	POTS (n = 35) (pg/mL)	Non-POTS (n = 35) (pg/mL)	p Value	Source	Major Function
CD30	3638 ± 822	160 ± 12	p < 0.0002	Activated T and B	Regulates cell proliferation
CD40	340 ± 165	452 ± 171	ns	B cell, Mac	TLR7 PLT-neutrophil tethering
CD40 L (CD154)	31 ± 13	6.7 ± 0.8	DS	Platelets, Mono	Recruits neutrophils and monocytes
IL 16	38 ± 8	4.4 ± 0.9	p < 0.0001	Mono/Mac, PLTs	Proinflammatory
IL-6	110 ± 15	58 ± 9	p < 0.003	Th Cells, Mac	Differentiates B cells to plasma cells
IL-8 (CXCL8)	145 ± 49	157 ± 25	ns	Mono, Neutro	Chemotaxis, proinflammatory
IL 10	24 ± 4	5.5 ± 1.0	p < 0.0001	T cell	Anti-inflammatory
IL-17	93 ± 20	4.2 ± 0.7	p < 0.0001	Th17	Proinflammatory
IL-18	207 ± 67	21 ± 9	p < 0.009	Mono	Proinflammatory, IL-1 family
IL 21	9025 ± 1875	2937 ± 517	p < 0.003	T cell	Controls NK and T cells
INFo	0.06 ± 0.04	223 ± 67	p < 0.002	Leukocytes	Anti-viral, phagocyte cell activation
INFB	8219 ± 2230	6334 ± 3267	ns	Fibroblasts	Anti-viral, anti-proliferative
INFY	8.5 ± 1.7	1.2 ± 0.2	p < 0.0001	NK, Th ₁	Antiviral, increases Neut and Mono function
MCP1 (CCL2)	441 ± 102	13 ± 2	p < 0.0002	Endo, PLT	Recruits monocytes
RANTES (CCL5)	13706 ± 3022	517 ± 297	p < 0.0001	Platelet, NK, T	Chemotactic for T cells
TNFa	972 ± 250	506 ± 120	ns	Mono, NK	Proinflammatory

Illevations of cytokines/chemokines are in red font. Decreases in cytokines/chemokines in blue font.

Furin levels and POTS

Summary: Immune dysregulation in POTS

- Infectious triggers are common
- Co-existent autoimmune or immune dysregulation is more common
- Autoantibodies are more common that include
 - Adrenergic receptors
 - Muscarinic receptors
 - Angiotensin 2 receptor
- Inflammatory cytokine abnormalities may be present in POTS
- No randomized clinical trials have been done for immunotherapy in POTS (underway)

UC San Diego Health

DYSAUTONOMIA INTERNATIONAL

POTS Study

Time-based eating intervention that may improve the health and quality of life of people with postural orthostatic tachycardia syndrome (POTS).

Long COVID Study

Therapy for patients with post-COVID-19 postural orthostatic tachycardia syndrome (POTS).

TO PARTICIPATE, CONTACT US FOR MORE INFO

858-246-2510

PreventiveCVResearch@health.ucsd.edu

www.taubresearchgroup.com